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SUMMARY

Hybrid analysis techniques based on the combined use of finite elements and the
classical Bubnov-Galerkin approximation are presented for predicting nonlinear
steady-state temperature distributions in structures and solids. In these hybrid
techniques the modeling versatility of the finite-element method is preserved and a
substantial reduction in the number of degrees of freedom is achieved by expressing
the vector of nodal temperatures as a linear combination of a small number of global-
temperature modes, or basis vectors. The Bubnov-Galerkin technique is then used to
compute the coefficients of the linear combination (i.e., the amplitudes of the
global-temperature modes) .

The basis vectors chosen are the path derivatives commonly used in perturbation
techniques, namely, the derivatives of the nodal-temperature vector with respect to a
preselected control (or path) parameter or parameters. The vectors are generated by
using the finite-element model of the initial discretization. Also, the performance
of alternate sets of basis vectors is investigated. In the alternate sets, only a
few path derivatives are generated, and they are augmented by a constant vector
representing a uniform temperature rise (or drop) and by reciprocal vectors with non-
zero components equal to the reciprocals of the nonzero components of the path deriv-
atives. A problem—adaptive computational algorithm is presented for efficient evalua-
tion of global approximation vectors and generation of the reduced system of equations
and for monitoring the accuracy of the reduced system of equations.

The potential of the proposed reduction methods for the solution of large-scale,
nonlinear steady-state thermal problems is also discussed. The effectiveness of
these methods is demonstrated by means of four numerical examples, including conduc-
tion, convection, and radiation modes of heat transfer.

This study shows that the use of the uniform-temperature mode and the path
derivatives as global approximation vectors significantly increases the accuracy of
the solutions obtained by reduction methods, thereby enhancing the effectiveness of
these methods for the solution of large-scale, nonlinear thermal problems.

INTRODUCTION

Computational methods for nonlinear heat transfer have recently become the focus
of intense research efforts because of the need for realistic modeling and accurate
thermal analysis of large, complex hardware systems subject to harsh environments
(e.g., reentry flight vehicle structures, large-area space structures, and nuclear
reactor components). Considerable progress has been made in the development of
numerical discretization techniques. (See, for example, refs. 1 to 3.) Also, a
number of versatile and powerful finite-element and finite-difference (lumped-
parameter) programs have evolved for nonlinear thermal analysis. A survey of some of
these programs is given in reference 4. 1In spite of these advances, the nonlinear
thermal analyses of most large and complex hardware systems require excessive amounts
of computer time even on present-day large computers and thus are very expensive.

The large numbers of degrees of freedom required in the nonlinear thermal analy-
sis of complex systems are often dictated by the topology of the system rather than



by the expected complexity of the behavior. A similar situation has been observed in
nonlinear structural analysis problems, and an effective reduction technique has been
developed to significantly reduce the computational effort. (See refs. 5 and 6.)

The application of the reduction method of reference 6 to transient nonlinear thermal
problems is described in reference 7. The aim of the present study is to develop a
reduction method and a computational algorithm for nonlinear steady-state thermal
analysis of structures and solids. The proposed technique is similar to that pre-
sented in references 5 and 6 for the nonlinear static analysis of structures and is a
hybrid method which combines the modeling versatility of contemporary finite elements
with the reduction in the total number of degrees of freedom provided by the classi-

cal Bubnov-Galerkin technique.

To sharpen the focus of the study, discussion is limited to nonlinear steady-
state thermal problems with continuous temperature fields in the space domain. Con-
vection, nonlinear conduction, and radiation modes of heat transfer are considered.

MATHEMATICAL FORMULATION
Governing Finite-Element Equations

The solid region is discretized by using a single-field finite-element model with
the fundamental unknowns consisting of the temperatures at the various nodes. The
governing finite-element thermal-equilibrium equations can be cast in the following

form:
{£(m?} = [x(m)y {1} -~ glo} =0 (1)

where {T} is the vector of nodal temperatures, {Q} is the normalized thermal-
load vector, [K(T)] is the n X n heat-transfer matrix (n is the total number of
degrees of freedom), and g 1is a normalizing parameter for the thermal-load vector.
(A 1ist of symbols used in this paper appears after the references.) The matrix
[K(T)] and the vector {Q} can each be decomposed into three components as follows:

[k(m] = k8] + [RE)] + [x(P)] (2)
and

{0} = {0@ 1} + {p(¥)} + {oh)} (3)

where [K(k)], [R(r)], and [K(h)] are the conduction, radiation, and convection

matrices; and {Q(o)}, {Q(r)}, and {Q(h)} are normalized applied heating, radia-
tion, and convection thermal-load vectors. For convenience, the material conductivi-
ties in the present study are assumed to vary quadratically with temperature, as

follows:

o 2
kocB = hoaB(l + YT + Y,T ) (4)




where hZB is the thermal-conductivity coefficient at a preselected reference
temperature of T = 0 and Y1 and Y, are conductivity coefficients. In the
numerical studies, only isotropic materials are considered, for which

_ _ 10 2 _ . . .
kll = k22 =k (l + YlT + Y,T ) and hlZ 0. Also, the convection matrix is
assumed to be independent of temperature and the radiation matrix varies cubically

with temperature.

The matrices [K(k)] and [i(r)] can be expressed in the following forms:

1 2

[k®7] = [k] + [k (M7 + ¢, [x?(m)] (5)
and

(k)] = g3k )] (6)
where [K(o)] is the linear conduction matrix (independent of T); [K(l)] and
[K(2)] are normalized nonlinear conduction matrices whose terms are linear and
quadratic in the nodal temperatures {T}; [K(r)] is a normalized radiation matrix;
and 91r 9y and q5 are normalizing parameters. The expressions for [K(O)],

[x(1)], [x2], [x®], [&x®)], {p©@}, {9®)}, ana {gM™} for the individual
elements are given in appendix A.

Solution of the Governing Equations

The solution of equation (1) is obtained by using an incremental-iterative tech-
nique (e.g., a predictor-corrector continuation method). This is accomplished by
embedding equation (1) in a single- or multiple-parameter family of equations of the
form {£(T,q)} =0 or {£f(T, 93, 95, 93)} = 0. Only the single-parameter case is
discussed in this section. The multiple-parameter case is examined in subsequent
sections (in conjunction with reduction methods). The normalizing parameters g,

d;r 9y and a5 are also referred to as control or path parameters. Henceforth,

the terms normalizing parameter, control parameter, and path parameter are used
interchangeably.

In the single-parameter case, {j = d; = g3z = 1. For each value of g in some
interval (e.g., 0 =X g = g), a solution {T(g)} exists which varies continuously
with g and satisfies the conditions {T(0)} = {0} ana {T(g)} = {T}. The solu-
tion {T} corresponding to a particular value of the parameter g 1is used to calcu-
late a suitable approximation (predictor) for {T} at a different value of g. This
approximation is then chosen as an initial estimate for {T} in a corrective-
iterative scheme such as the Newton—~Raphson technique. The iteration process is
represented by the following equations for the jth iteration cycle:

[3]1@{arr ) = ~f{£(T,9) } ) (7)



and

(ry U+ — (0} 4 (A} d) (8)

where [J] is the Jacobian matrix defined as

BKIL
[5] = [k] + 553— TL (9) .

Note that the Jacobian matrix [J] is, in general, nonsymmetric. In the present
study, in order to avoid the complications associated with solving nonsymmetric equa-
tions, a quasi-Newton method is used. The method is based on using a symmetric

approximation to the Jacobian matrix consisting of the sum of the matrix [K(O)] and

oK
. . . IL
the contribution of the radiation matrix to 3T. TL . The contributions of the
J
BKIL
nonlinear conduction matrices to gir—-TL form a nonsymmetric matrix and are
J

neglected.

BASIC IDEA OF REDUCTION METHODS
Basis Reduction and the Reduced System of Equations

The essence of reduction methods is to reformulate the problem in terms of a
few discrete variables {¢}, which represent amplitudes of global-temperature modes
(functions of the variables {T}). This is accomplished by using the following

transformation:

{T}n,l - [P]n,r{w}r,l (r << n) (10)

where [T] is an n X r transformation matrix in which the columns represent global
approximation (or basis) vectors. Note that the number of generalized discrete
variables r is assumed to be much smaller than the number of degrees of freedom of

the initial discretization n.

A Bubnov-Galerkin technique is then used to approximate equation (1) with a !

much smaller system of nonlinear algebraic equations in the new unknowns {y}. The

reduced equations have the following form:
{fa ) = [k Iy} - algl =0 (11)

where {

!

~ T !
(k] = [T1 [x@ IT] (12) ‘

4

i__" e



and
{8} = [r1%o} (13)

The tilde (~) refers to the reduced system, the superscript T denotes transposi-
tion, and [XK(Y)] 4is obtained from [XK(T)] by replacing {T} by its expression in
terms of {W} from equation (10).

The reduced-system heat-transfer matrix [E] and thermal-load vector {é} can
be separated into components as follows (see egs. (2), (3), (5), and (6)):

R T = [ROV] + q[RMDT + @ [RD] + ¢ [kRD] + [&M] (14)
and

0 = (3@ 4+ 3®y 4 M)y (15)

where [X(®)] is the linear conduction matrix; [&(1)] and [&(2)] are the
(r)]

normalized nonlinear conduction matrices; [R(h)] and [R are the convection

and normalized radiation matrices; {é(o)} is the normalized applied heating vector;

and {é(r)} and {é(h)} are normalized radiation and convection thermal-load
vectors. The explicit forms of the reduced-system arrays are given in appendix B.

The solution of the reduced-system nonlinear equations (eq. (1l1)) is obtained
by using an incremental-iterative technique similar to the one described in the pre-
ceding section for the full system of equations. However, since the number of equa-
tions is small and their solution time is a small fraction of the total analysis
time, no approximation needs to be made for the reduced-system Jacobian matrix [3],

oK, ,
and the nonsymmetric contributions of the nonlinear conduction matrices to — wl

3,

are included in [3].

Selection of Basis Vectors

The crux of reduction methods is the proper selection of the reduced basis
vectors (columns of the matrix [F] in eqg. (10)). An ad hoc or intuitive choice
may not lead to a satisfactory approximation. A large number of numerical experi-
ments with structural and solid mechanics problems have demonstrated that, in the
case of a single path parameter (such as q), the various-order derivatives of {T}
with respect to g (path derivatives) provide an effective set of basis vectors.
(See refs. 5 and 6.) 1In the present study, the effectiveness of using such basis
vectors for thermal problems is investigated. The path derivatives are evaluated at
qg=0 (g =g, = a5 = 1) and are given by

2 r
[r] = {%3} : 3§—§§ e jﬁ—§§ (16)
o 3a“), 3a™),



In the case of multiple path parameters (such as dyr Qo and q3), the basis

vectors are chosen to be the various-order derivatives with respect to these path
parameters evaluated at q; = d, =93 = 0 (g = 1), that is,

BTE ;g_rg_g ;aTg 5T ; 521 2 g 5T z (17)
day ) %9 " {995), aqf 9y ¥ap) " {99y 9az)_
(o]

where {T}_ 1is the linear solution (zeroth-order derivative). The equations used in
evaluating the basis vectors (path derivatives) are obtained by successive differen-
tiations of the governing finite-element equations of the initial discretization in
equation (1). The explicit forms of these equations are given in appendix C for both
the single-parameter and the multiple-parameter cases. The advantage of computing
the path derivatives at zero values of the path parameters is that the left-hand-side
matrix used in evaluating the path derivatives is independent of temperature. (See

appendix C.)

[F] = {T}OI

The chosen set of basis vectors is the same as that commonly used in classical
perturbation techniques. The basis vectors have the following properties:

1. They are linearly independent and span the space of solutions in the neigh-
borhood of the point of their generation, and therefore they fully charac-
terize the nonlinear solution in that neighborhood.

2. Their generation, using the finite-element model of the initial discretiza-
tion, requires only one matrix factorization of the linear matrix

[tK(O)] + [K(h)]] (see appendix C), and therefore it is computationally

inexpensive.

3. They provide a direct measure of the sensitivity of the thermal response to
changes in the control (path) parameters.

The first property is necessary for the convergence of the Bubnov-Galerkin
approximation. The second property significantly enhances the efficiency of the
reduction method and increases its effectiveness in solving large-scale nonlinear
thermal problems. The implication of the third property is that by appropriate
choice of the control parameters, sensitivity of the temperature distribution to
changes in the thermal data of the medium (e.g., nonlinear conduction and radiation
coefficients) can be obtained. Note that the sensitivity information is obtained at
zero value (s) of the control parameter(s). If the sensitivity is required at other
values of the parameter(s), approximate Taylor series expansion(s) may be used.

It should be noted that the use of path derivatives as basis vectors in non-
linear structural and solid mechanics problems provided highly accurate solutions
within a large neighborhood of the point of evaluation of these derivatives

(refs. 5 and ©6).

Comparison With Taylor Series Expansion

If the reduction method outlined in the preceding section is contrasted with
the Taylor series expansion used in classical perturbation techniques, the following




can be noted. In both methods the vector of nodal temperatures {T} is approximated,
over a range of values of the path parameter(s), by a linear combination of the
various-order derivatives of {T} with respect to the path parameter(s). However,
the coefficients {Y} of the linear combination in the Taylor series expansion are
fixed and are equal to

2 3
(Aq) (Ag)
Ag, T TR

for the single-parameter case and

2
1, A A A jégll—' A A A A
+ By, 895, Od3, o1 r 09y 84,5, B9y Ad3s ...

for the three-parameter case. By contrast, the coefficients {Jy} in the reduction
technique are left as free parameters and are determined by using the Bubnov-Galerkin
technique. Therefore, the reduction method can be thought of as either of the
following:

1. A generalized Taylor series (or perturbation) approach with free parameters
or coefficients {y}

2. A generalized Bubnov-Galerkin approach with the approximation (or basis)
vectors generated by using a preselected finite-element model rather than
chosen a priori

Numerical experiments have shown that the use of the free parameters in the general-
ized Taylor series technique leads to accurate solutions not only within the radius
of convergence of the Taylor series but also well beyond it. (See refs. 5 and 6.)

Comments on the Selection of Basis Vectors

The computational effort required to generate the basis vectors can be reduced
by generating only a few path derivatives (four or five) using equations (Cl) or (C2)
and then augmenting these derivatives with a constant vector with equal components
representing a uniform temperature mode, and/or reciprocal vectors with nonzero com-
ponents equal to the reciprocals of the nonzero components of the vectors in equa-
tions (Cl) or (C2). The performance of the augmented set of basis vectors is dis-
cussed in the section entitled "Numerical Studies."

COMPUTATIONAL ALGORITHM USED WITH REDUCTION METHODS
To realize the potential of reduction methods in large-scale, nonlinear thermal
analysis, a problem-adaptive computational algorithm is needed which is both robust
and efficient. The two key elements of the algorithm for nonlinear steady-state

problems are the following:

1. Efficient evaluation of the basis vectors and generation of the reduced sys-
tem of equations

2. Sensing and controlling the error in the reduced system of equations



These elements have been discussed in references 5 and 6 in connection with struc-
tural and solid mechanics applications. The key features of the procedure are dis-

cussed hereinafter.

Evaluation of the Basis Vectors and Generation
of the Reduced System of Equations

The particular choice of the basis vectors to be the various-order derivatives
of the nodal-temperature vector {T} with respect to the path parameter(s) permits
the generation of all the vectors with only one factorization of the matrix

[tK(o)] + [K(h)l}. (See appendix C.) Therefore, the effort to generate the second
and succeeding basis vectors reduces to that of evaluating the right-hand sides R(a)
of equations (Cl) or (C2) for the single-parameter or the multiple-parameter cases.
The expressions of the right-hand sides grow in complexity for higher order deriva-
tives, and their computation involves contractions of multidimensional arrays with
the basis vectors. (See appendix C.) To improve the computational efficiency, the
contracted arrays which are common to more than one right-hand side are formed once

and stored for subsequent use.

Note that because of the recursive nature of the formulas for the path deriva-
tives in both the single-parameter and the multiple-parameter cases, all the lower
order derivatives must be evaluated before any subsequent derivatives can be com-
puted. Once the entire set of path derivatives has been generated, it can be aug-
mented with a constant vector, reciprocal vectors, or the vector {zZ} (eg. (D2) in
appendix D) for the case of prescribed nonzero nodal temperatures to form the

matrix [I].

The formation of the reduced arrays involves contraction of the full-system
arrays with the basis vectors and appears to be the most time-consuming part of the
solution process based on the reduction technique. The independent elements of the
reduced arrays are generated once and stored for subsequent use, when the tempera-
ture distribution is required for different value(s) of the path parameter(s).

Sensing and Controlling the Exrror in the
Reduced System of Equations

To check the accuracy of the solution obtained with the reduced system of equa-
tions at any value of the path parameter, the approximate nodal temperatures are
generated by using equation (10) with the vector {¢} obtained by solving the
reduced equations in equation (11). Then the residual vector {R} of the original
finite-element equations (eqg. (1)) is computed as follows:

{r} = [x(7)J{T} - alo} (18)

In the present study, a weighted Euclidean norm of {R} is used as an error
measure e, namely

e =é {R}T{R}/<{Q7}IT{Q—}) (19)

perap—



Numerical experiments have demonstrated that the error norm e is useful in
assessing the overall accuracy of different reduction methods (based on different
sets of basis vectors). However, the magnitude of this error norm was found to be
problem dependent, and therefore it is not possible to prescribe a value for the
error tolerance which is suitable for different classes of nonlinear thermal problems.
An alternate way of assessing the accuracy of the reduced solution is to use the
vector of nodal temperatures {T} generated by the reduced system as a predictor in
the full system, obtain a corrected estimate of {T} by performing a single iteration
of t?e}Newton—Raphson technique, and compare the predicted and corrected values
of Tr.

NUMERICAL STUDIES

To test and evaluate the effectiveness of the proposed reduction techniques,
several nonlinear thermal problems were solved. For each problem, solutions based
on the full system of equations of the finite-element model were compared with other
numerical approximations and exact solutions, whenever available; then the solutions
obtained by the reduction method were compared with the full-system solutions and with
other numerical approximations. The results of four typical problems are discussed
herein. The four problems are the following: (a) two-dimensional steady-state con-
duction in a square plate; (b) two-dimensional steady-state conduction in a cylinder
with an eccentric hole; (c) steady-state analysis of a one-dimensional conducting-
convecting-radiating fin; and (d) steady-state conduction and radiation in 'a segment
of the Space Shuttle orbiter wing. In all the problems considered, the thermal con-
ductivity is assumed to be temperature dependent. In the first two problems only the
single-parameter reduction method is used, and in the last two problems both the
single-parameter and the multiple-parameter methods are applied.

Two-Dimensional Steady-State Conduction in a Square Plate

The first problem considered is that of steady-state thermal conduction in a
thin square plate with prescribed boundary temperatures. (See fig. 1.) The thermal
conductivities vary quadratically with temperature. The material and geometric char-
acteristics of the plate are given in figure 1. The problem was solved with a number
of technigues, including an exact analytic technique based on the Kirchhoff trans-
formation, finite elements, single-parameter reduction methods, and a perturbation
technique based on Taylor series expansion of the temperature. The details of the
exact analytic solution are given in appendix E. For the case of linear variation of
conductivity coefficients with temperature, an exact analytic solution and a perturba-
tion solution are presented in reference 8.

Because of symmetry, only one~half of the plate was considered and was modeled
by a grid of 5 X 10 elements with biquadratic Lagrangian interpolation functions for
the temperature {(a total of 190 temperature degrees of freedom (D.O.F.)). The
finite-element solution was found to be in close agreement with the exact analytic
solution. In both the single-parameter reduction method and the Taylor series
expansion, the control parameter g was taken to be the amplitude of the nonzero
prescribed boundary temperatures. Contour plots for the temperatures at g = 300 K,
600 K, and 2400 K are shown in figure 1. As can be seen from figure 1, at higher
values of g a boundary layer (with steep temperature gradients) is formed near the
edges where a temperature of 0 K is prescribed. The basis vectors were evaluated at
g = 0 K, and they were obtained by solving a linear set of finite-element equations.
(See appendix C.)



Four sets of basis vectors are considered in the reduction method. The first
two sets of basis vectors consist of the following: (a) the first eight derivatives
with respect to the control parameter q; and (b) the first four derivatives with
respect to g and four reciprocal vectors (with nonzero components equal to the
reciprocals of the nonzero components of the path derivatives). The last two sets of
basis vectors are the same as the first two, except for the addition of a constant
vector. Normalized contour plots for the first six path derivatives are shown in

figure 2.

The accuracy of the solutions obtained by using the Taylor series expansion and
the reduction method is indicated in figures 3 and 4. BAlso, figure 5 shows the vari-
ations of the error norm e (eq. (19)) and the root-mean-square error as the number >
of reduced-system basis vectors increases. An examination of the results shown in

figures 3 to 5 reveals the following:

1. The Taylor series solution is considerably in error, even for the lowest value
of g (g = 300 K). (See fig. 3.) The radius of convergence of the Taylor
series was found to be in the neighborhood of g = 240 K. By contrast, the
solutions obtained by using the single-~parameter reduction method with eight
basis vectors were generally accurate, except near the boundary zone. (See

fig. 4.)

2. The accuracy of the solutions obtained by using four derivatives and four
reciprocal vectors is comparable to that obtained by using the eight deriva-
tives. (See fig. 4.) However, the computational effort involved in gen-
erating the eight derivatives is considerably more than that required for
generating the four derivatives and the reciprocal vectors.

3. The accuracy of the solutions obtained by using the reduction method was con-
siderably improved when the eight basis vectors were augmented by a constant
vector. This is true for both sets of basis vectors. (See fig. 4.)

4. The variation of the error norm e 1is similar to that of the root-mean-square
error (see fig. 5), and the solutions obtained with the reduction method
converge to the full-system solution as the number of basis vectors

increases.

Two-Dimensional Steady-State Conduction in a Cylinder
With an Eccentric Hole

The second problem is steady-state conduction in a cylinder with an eccentric
hole. The temperatures of the inner and outer surfaces of the cylinder are prescribed
to be 1000 K and 0 K. The finite-element model along with the material and geometric
characteristics of the cylinder is shown in figure 6. A previous finite-element
solution is presented in reference 9 for linear variation of the conductivity coeffi-
cients with temperature. Because of symmetry, only one-half of the cross section was
modeled by a grid of 48 isoparametric, 9-noded elements (a total of 195 temperature
degrees of freedom). Contour plots for the temperatures are shown in figure 6 for
the two cases of Yo =0 and Y, = 0.005, which correspond to linear and quadratic
variation of thermal conductivity with temperature. A boundary layer (with steep
temperature gradients) exists near the outer surface when Yo = 0.005, as shown in
figure 6. The control parameter g was taken to be the amplitude of the prescribed
boundary temperature. The basis vectors were generated at g = O.

10



Four sets of basis vectors are again considered, namely, eight derivatives with
respect to the control parameter g, eight derivatives and a constant vector, four
derivatives with respect to g and their reciprocal vectors, and four derivatives,
their reciprocal vectors, and a constant vector. The accuracy of the solutions
obtained by using each of the sets of basis vectors is indicated in figure 7 for the
two cases of Yy = 0 and Y, = 0.005. As in the previous problem, the addition of
the constant vector considerably improves the accuracy of the solutions, particularly
near the outer surface for the case of 7Yy, = 0.005. (Note that the error in the solu-
tion obtained without the use of the constant vector is represented by the distance
between the cross and circle symbols in fig. 7.) Also, the accuracy of the solutions
obtained by using four derivatives and four reciprocal vectors is comparable to that
obtained by using the eight derivatives.

Steady-State Analysis of a One-Dimensional
Conducting-Convecting-Radiating Fin

The third problem considered is steady-state analysis of a one-dimensional
conducting-convecting-radiating fin. (See fig. 8.) The temperature at one end is
prescribed to be 1000 K. The fin was modeled by using a variable grid of 15 one-
dimensional finite elements having 3 nodes and quadratic Lagrangian interpolation
functions for the temperature (a total of 30 temperature degrees of freedom). The
thermal conductivity is assumed to vary linearly with temperature, and therefore the

nonlinear conduction matrix [K(z)(T)] is zero.

Solutions were obtained by using both the single-parameter and the two-parameter
reduction methods. In the single-parameter method, the control parameter g 1is the
magnitude of both the prescribed temperature at X1 = 0 and the convection thermal-
load vector. The first six derivatives with respect to g were generated at g = 0.
In the two-parameter method, the control parameters are chosen to be q; and d3-
Six path derivatives were generated at q; = a3 = 0. (These include the linear solu-
tion and all the first and second derivatives with respect to a; and q3.) The
accuracy of the solutions obtained by using the reduction methods is indicated in
figure 9. The solutions obtained by using both the single-parameter and the two-
parameter reduction methods are in close agreement with the full-system solution
except near the edge where xy = 1.0. The maximum errors in the temperature at
x; = 1.0 obtained with the single-parameter and the two-parameter reduction methods
are 6.9 and 5.8 percent. In the presence of convection, it was necessary to add the
constant vector to the two sets of basis vectors to obtain accurate solutions.

Steady-State Conduction and Radiation in a Segment
of the Space Shuttle Orbiter Wing

The fourth problem is steady-state conduction and radiation in a segment of the
Space Shuttle orbiter wing (fig. 10). The problem was selected to assess the effec-
tiveness of reduction methods for complex aerospace applications.

The model consists of a two-dimensional cross section of a single bay of the
Shuttle orbiter wing including reusable surface insulation (RSI) and RSI coating,
room temperature-~vulcanizing (RTV) rubber, a strain isolation pad (SIP), and part
of the aluminum wing box structure. This model is an adaptation of a finite-element
model developed by the authors of reference 10. The applied heating on the structure
consists of a distributed heat source on the outer surface Q(x;), which varies

11
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quadratically with x;. The temperature of the aluminum inner surface is prescribed
as 394.4 X and the outer surface is a radiating boundary. The material and geometric
characteristics of the structure and the finite-element model used are shown in fig-
ure 10. Note that the scale of the model is magnified in the x, direction for
visual clarity. Rectangular nine-noded Lagrangian elements with biquadratic interpo-
lation functions for the temperature are used in modeling the RSI, RTV, and SIP. The
aluminum structure, RSI coating, and radiating boundary are modeled by using one-
dimensional three-noded elements with quadratic temperature interpolation functions.
The finite-element model has a total of 64 nine-noded rectangular elements, 16 three-
noded conduction elements, and 8 three-noded radiation elements (a total of 272 tem-
perature degrees of freedom).

Solutions were obtained by using both the single-parameter and the three-
parameter reduction methods. 1In the single~parameter method, the control parameter ¢
was the magnitude of both the prescribed temperature and the applied heating. A total
of eight path derivatives were generated at g = 0. In the three-parameter case,

10 path derivatives were generated at gq; = 9, = 953 = 0.

The following two sets of basis vectors were used: the first eight derivatives
with respect to the control parameter, and the linear solution and all the first- and
second-order derivatives with respect to the control parameters dy, dy, and d3. A
constant vector was added to each of the two sets. The accuracy of the solutions
obtained by using each of the two sets of basis vectors is indicated in figure 11, in
which plots of the temperature distribution along lines parallel to the x; and x
axes are shown. The variations of the error norm e and the root-mean-square error
with the number of basis vectors are shown in figure 12. The addition of a constant
vector to the path derivatives was necessary to obtain acceptable accuracy. (Results
obtained without the use of the constant vector are not shown.)

An examination of the results shown in figures 11 and 12 reveals the following:

1. Both the single-parameter and the three-parameter reduction methods give
accurate results for the high temperatures at the outer surface. However, the solu-
tions obtained by using the single-parameter method are more accurate than those
obtained by using the three-parameter method in the low-temperature region (near the

aluminum structure).

2. The variation of the error norm e is similar to that of the root-mean-square
error, and the solutions obtained with both the single-parameter and the three-
parameter reduction methods converge to the full-system solution as the number of
basis vectors increases.

COMMENTS ON REDUCTION METHODS FOR NONLINEAR THERMAL ANALYSIS

The proposed reduction methods appear to have high potential for solution of
large~scale, nonlinear thermal problems. The numerical studies conducted clearly
demonstrate the accuracy and effectiveness of the techniques. In particular, the

following two points are worth mentioning:

1. The small size of the reduced system of equations makes it feasible to con-
duct parametric studies by repeatedly solving the equations for varying values of

the control parameter(s).

12
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2. For the problems considered, the reduction in the analysis time achieved by
using the proposed technique in general was not proportional to the reduction in the
number of degrees of freedom of the initial discretization. This was due to the rela-
tively high cost of evaluating the basis vectors and of generating the reduced equa-
tions - (as compared with the cost of solving the reduced nonlinear algebraic equa-
tions). For any given problem, the saving in the analysis time resulting from the
use of reduction methods is a function of the hardware and of the system software as
well as the efficiency of the program used in the analysis, and therefore it is diffi-
cult to quantify. In the numerical examples considered, overall reductions in the
CPU times are estimated to be factors of 2 to 3. However, it should be noted that the
program used for the computation was not optimized, and additional information in the
form of sensitivity of the thermal response was provided by the basis vectors used in
the proposed technique. More dramatic savings in CPU times are expected in large-
scale problems with thousands of degrees of freedom if an efficient computer imple-
mentation of the proposed technique is made.

CONCLUDING REMARKS

Reduction methods and a problem-adaptive computational algorithm were presented
for predicting nonlinear steady-state temperature distributions in structures and
solids. The computational algorithm can be conveniently divided into the following
two distinct stages: discretization by using the finite-element method, and reduction
in the number of degrees of freedom of the initial discretization by expressing the
vector of unknown nodal temperatures as a linear combination of global-temperature
modes, or basis vectors. A Bubnov-Galerkin technique is used to compute the coeffi-
cients of the linear combination (amplitudes of the global-temperature modes). The
basis vectors are chosen to be those commonly used in the perturbation technique,
namely, the derivatives of the nodal-temperature vector with respect to preselected
control (or path) parameters. The vectors are generated by using the finite-element
model of the initial discretization.

Four numerical examples demonstrate the effectiveness of reduction methods for
the solution of nonlinear steady-state thermal problems. The four problems are two-
dimensional steady-state conduction in a square plate, two-dimensional steady-state
conduction in a cylinder with an eccentric hole, steady-state analysis of a one-
dimensional conducting-convecting-radiating fin, and steady-state conduction and
radiation in a segment of the Space Shuttle orbiter wing. 1In all the problems con-
sidered, the thermal conductivity is assumed to be temperature dependent.

The results of the study suggest several conclusions relative to the selection
of basis vectors and to the effectiveness of using reduction methods in nonlinear
steady-state thermal problems. These conclusions are as follows:

1. The proposed reduction methods are hybrid techniques which combine the major
advantages of the finite-element numerical discretization technique, the classical
Bubnov-Galerkin technique, and the perturbation method. These advantages are model-
ing versatility, reduction in total number of degrees of freedom, and simplicity of
assessing the sensitivity of the thermal response to variations in the control (or
path) parameters. Moreover, the proposed methods greatly alleviate the following
major drawbacks of the aforementioned three techniques:

a. Excessive amounts of computer time required for the nonlinear finite-element
analysis of large, complex systems

i3



b. Difficulty of selecting global approximation functions for the classical
Bubnov-Galerkin technique

¢. Small radius of convergence of the Taylor series expansions used in the
classical perturbation technigques

2. The use of path derivatives as basis vectors in nonlinear steady-state
thermal problems leads to accurate solutions with a small number of basis vectors.
Therefore, the time required to solve the reduced equations is relatively small, and
the total analysis time to a first approximation equals the time required to evaluate
the basis vectors and generate the reduced equations.

3. The range of applicability of the reduction method can be greatly extended by
augmenting the path derivatives of the nodal temperatures with a constant vector
representing a uniform temperature rise or drop. In the problems considered, the
addition of a constant vector was crucial for obtaining accurate solutions.

4. The computational effort required for generating the basis vectors can be
reduced by generating only a few path derivatives (4 or 5) and then augmenting these
vectors with "reciprocal vectors," in which nonzero elements are equal to the recip-
rocals of the nonzero values of the path derivatives. The accuracy obtained by using
this set of basis vectors is comparable to that obtained by using an equal number of

path derivatives.

5. The accuracy of the multiple-parameter reduction method is comparable to that
of the single-parameter method. However, the former provides more information about
the sensitivity of the thermal response to variations in the material properties of

the structure.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

December 6, 1982
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APPENDIX A

FORMULAS FOR COEFFICIENTS IN THE FINITE~ELEMENT
EQUATIONS FOR INDIVIDUAL ELEMENTS

The finite-element equations for individual elements can be written in the fol-
lowing form:

(o) (1) (2) (r) (h) _ (o) (r) (h)
E<IJ QK T T Rk Tk T R rokan Tk LTyt KIJ:ITJ = q(QI +Q + Qo )

(A1)

(o)

(1) (2)
13 7 and K

full- . . . _
13K’ 1JKL are full-system linear and normalized nonlinear con
(r)

: (h)
duction arrays; KIJKLN and KIJ
Q(o) are normalized applied heating thermal-load coefficients for the full system;

and Qér) and Qéh)

where K K

are full-system radiation and convection arrays;

are normalized radiation and convection thermal-load coeffi-

cients for the full system. The range of the uppercase subscripts (Latin index) is
1 to m, where m 1is the number of nodes in the element, and a repeated uppercase
subscript denotes summation over the full range.

The coefficients in equation (Al) are defined as follows:

(o) _ ./ﬂ o
L haB BaNI aBNJ an
qle)

K(l)=f ©4 AN N N an

IJK A6 ol "o B'J K
Q(e)
o [ e
KIJKL = Yzhas aaNI BBNJ NKNL 15194
Q(e)
(r) _ jr
Kookin = o) oeNINJNKNLNN dc
C

X

(h) J[
K = hN_N_ dc
IJ (e) IJ

“h
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(o) _ f
Q' = QNI an

qfle)

(r) _ Jf
Q aHNI dc

(e)
C
r

(h) _ f
Q7 hThNI dc
c(e)
h

In the above equations, NI are shape (interpolation) functions, Ba = B/BXQ,

BB = B/BXB, Q(e) is the element domain, cée) is the portion of the element domain

where radiant heating (or cooling) is prescribed, cée) is the portion of the element
domain where convective heating (or cooling) is prescribed, @ is the source heat
rate, O 1is the Stefan-Boltzmann constant, € 1is the emissivity, a is the absorp-
tivity, H is the incident radiant heat flux, h is the convection coefficient, and
is the known convective-exchange temperature. The range of the indices o,B is

Th
1,2, and a repeated index denotes summation over the full range. Note that the K
arrays possess the following indicial symmetries: K(g) and Kég) are symmetric

(1)

with respect to interchange of I and J; KIJK is symmetric with respect to inter-

2 . . . .
change of I and J; KéJ) is symmetric with respect to interchange of I and J
r . . . .
or K and L; and KéJ;LN is completely symmetric with respect to interchange of

any two indices.

Elements with identical geometry and identical thermal properties have identical
K arrays. Therefore, the K arrays are generated only for different elements
(i.e., for elements with different geometry and/or different thermal properties).

16



APPENDIX B

EXPLICIT FORMS OF THE REDUCED SYSTEM OF EQUATIONS

The reduced system of equations (eg. (11)) can be written in index notation as
follows:

~ (o) (l) ~(2) (h) _ _[=to) ~(x) ~(h)
[%ij + 94K ij kw EP) 1jk2wkw2 43 ljkﬁnwkwlw 1] lpj h q<Qi + 9y + Q )

(B1)
The structure of these equations is similar to that of the finite-element equations

for individual elements given in appendix A. The arrays in equation (Bl) can be
expressed in terms of the full-system arrays defined in appendix A and the matrix of

basis vectors TIi as follows:

~ (o) _ (o)

Kij h Kig I1Ii Jj
Elements

~{1) _ (l)

Kijk B Z KIJK IlriPKJ<
Elements

~(2) - (2)

13k2 E KIJKLFIiFJjFKkFLR,
Elements

~(r) _ (r)

KiijLn B E IJKLNFnFJJFKkFLRFNn

Elements

~(h) _ (h)

Kij h E Kig FIiFJj
Elements

~(o) _ (o)

Qi - Z QI FI:L
Elements

~(r) _ (r)

Qi - E QI l—12[1
Elements

~(h) _ (h)

Q9 = Z 9 FI.‘L
Elements

17
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where the range of uppercase subscripts (Latin index) is 1 to m (number of nodes in
the element), the range of lowercase subscripts (Latin index) is 1 to r (number of
reduced-system degrees of freedom), and a repeated index in the same term denotes
summation over the full range.

Note that the indicial symmetries exhibited by the full-system arrays are

retained in the reduced system as follows: ié?) and i;b) are symmetric arrays;
~(1) o . > T, oL@ :
Kijk is symmetric with respect to interchange of i and j; Kijk£ is symmetric
with respect to interchange of i and j or k and {£; and Ri?i%n is completely

symmetric with respect to the interchange of any two indices.

18
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APPENDIX C

EVALUATION OF THE PATH DERIVATIVES

The path derivatives in equations (16) and (17) are obtained by successive dif-
ferentiation of the governing finite-~element equations (eq. (1)) with respect to the
path parameter g 1in the single-parameter reduction method and with respect to the
parameters d1, 9y and 95 in the three-parameter reduction method. The explicit

forms of the recursion relations for individual elements are given in this appendix.

Single-Parameter Reduction Method

The recursion relations for the path derivatives can be written in the following
compact form:

L©) K(hj 8%y _ q@) (c1)
IJ 7 552 | -
g |g=0

where I and J range from 1 to m (number of nodes in the element), a ranges
from 1 to r {(number of reduced-system degrees of freedom), and the explicit forms

(a)
I

of the components of the right-hand side R are given in table Cl.

(a)

TABLE Cl.- EXPLICIT FORMS OF COMPONENTS OF RI FOR SINGLE-PARAMETER METHOD

a Explicit form of R(a)

I
(o) (r) (h)
1 0, * QT o
oT oT
(1) J K
2 _ZKIJK 9g 9gq
(1) [3Tg 82T 32Ty ATy
3 ~3K13x\3 RN
q dg 3q q

~6K5x1, 39 39 dq
dr, 83T 92T 92T 93T, oT
4 _Ki§;<4 p) . 3K + 6 2J 2K 3J d :
9 3q 3g® 9dq dq 4
2 2
(2) aTJ BTK ] Ty, ) T, aTK BTL
K 2454 3 2 Y12 o557 3
KL\"" 9q 39 g 52 94 04
9Ty 0Ty 9dTy OT
_24K(r) J K L N

IJKLN 9 9dg9 9q 0dg
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TABLE Cl.~ Continued

af.

Explicit form of Ré
4 3 2 2 3 4
(1) 0 T BTK 0 T P Ty 0 T; P Ty 3TJ 9 Ty
Kx\® T2 3q 7053 2 T TE T3 tPhg 4
IR\ ag® 94 3g> 3q 3g° 3q R
3 2 2 3
_K(Z) 97T 5 AT, BTL + o 9T 9Ty P T N yHI(o 3Ty 3 T, + 30
IJKL 3q3 dq 9dg 8q2 g 3q2 oq g 8q3
2
(r) BTJ BTK BTL 0 TN
-240K
IJKLN 3g dg dgq 3q2
5 4 2 3 3 2 4
—K(l)( e S N 2 7Ty . 997 3Ty
TIK\" 545 dq 3q%  5q? 503 33 32 aq4
4 3
(2) 9Ty amy ATy 33TJ ATy 32TL 32TJ 9T, 37T
-K 30 — = 5= 30 * 120 —= 7 5+~ (120 5= —
LIKL| 5% 99 94 5a> % 3q 3g 9 3q
921y 32T T dry o4ty 32ty 33Ty,
+ 90 — 5]+ 55160 3 o+t 120 — 3
3q° 3q q 4 3q 3g“ dq

9T~ 8T, 8T, 9°T
(x) ( J K7L N, 1080 >

dg 92g 9gq 8q3 9g 9dg 3q

4 3
) Ty d Tx

4 3

(1)
KIJK

+ 21 + 35

6 5 2
( 9°T; 3Ty 3°Ty 37Ty,

oq

+ 35 + 21

+ —_—

33T, o4y 92Ty 35Ty 9Ty 96T,

9Ty ATy 92Ty, 82TN>

3q2

|

+ 210

+

IJKL dq

+ 210 + 420

92T, 32T\ 92T 9T, 34Ty
2 2 )T 2 \*9 3 Z
3g agq dq 9 3q

+ 210 + 140

4
og 8q5 aq2 3q

+

(r)

357 3r, 9T odr_ a1, 927, 3T
g () [}2 J %k °°L J 9k L

3

92T

2

oq

3
x 0 TL)

9T, 33T
JGso K__ L

pile] an

8q3

5 2 4 3 3
BTJ<8 ATy 37Ty 34Ty 9°Ty 3°Ty 9 TL)J

+ 5040
dg 9dg 9dg 3q4 9g o9q

~Kigkin 2

og

2 2 2
BTJ ) Ty 0 Ty, ) Ty
+ 2520
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3

2 2
0Ty 9°T

3q2
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TABLE Cl.- Concluded

a Explicit form of Réa)

7 6 2 5 3 4 4 3 5
. —K(l)< 3'r; ATy 3°Ty 9°Ty 3°Ty 9 Tk 3%ry 9Ty 33Ty 3°Ty

—_— 2 + v
17K 7 3q 8 3 5 + 56 5 3 70 + 56

3q 3¢® 9g 3q° g 3g? agt 3g3 3g°

+ 28 + 8

9215 357y 9T 37TK>
2 aq6 Bq 8q7

g
6 5 2 4

(2) o Tg BTK BTL 9 Ty BTK ] Ty, )
“Kikn|®® T6 39 39 336 53 2 Yt T2
3gq E! d og 9 3q aq

92T, 32T 53T o1, 94T 327, 33T
2K 2L) + 3J (560 K- 'L, 300 X _ L

3g° 3g 9q 3q

3q4 qu 8q3
2
3 TJ< AT, R 32Ty, 34Ty 33T, 33TL)

3
Ty BTK ) Ty,
560 —— ———

+ 420

+ 560
Bq aqS aq2 aq4 3q3 aq3

5 2 4
9T~ 9T,, 8T, 3T 9T 9T, 9“T, 9~T
_K(r) <1344 J K L N J K L N

IJKLN 3g 9g 9q aqs + 10 080

2 2 3 3 3
BTJ 0 Tk ) Ty, ) Ty BTJ BTK 9 Ty, 0 TN
3

+ 20 160 + 6720

9%, 321y 3%y BZTN)

oq

+ 2520

le] 9gq

Three-Parameter Reduction Method

The recursion relations for the individual elements have the following form:

aPts*ty

() | (h) J - r® (c2)
1J 17} 0P 8.5 50t |y —a cq. o 1
q; °9, 99397974937

where I and J range from 1 to m. The total number of pt+s+t combinations

(a)
I

is r, and the explicit forms of the components of the right-hand side R are

given in table C2.
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TABLE C2.- EXPLICIT FORMS OF COMPONENTS OF R(a)

I
Order
of p | s t Explicit form of R
equation
(o) (r) (h)
Zeroth 0 0 0 QI + QI + QI
. (1)
First 1 0] 0 IJKTJTK
(2)
0 1 0 KIJKLTJTKTL
olo 1| -x"% orrr
IJKILN J KL N
aT QT
(1) K J
— —_— + ——
Second 2 0 0 2KIJK<TJ 3q1 TK 5q )
1
_ (2) oT BTJ
0 2 0 KIJKL<4TJTK 3 2 + 2TKTL 3q2
oT
(r) N
0 0 2 8KIJKLN(TJTKTL 3q3>
oT oT
(2) L J
0 1 1 KIJKL<2TJTK 5@; + TKTL 5&;)
oT
(r) N
4KIJKLN<TJTKTL 3q2>
T oT
(1) K J
1 0 1 Krgr\¥s e} Ty g
3 3
(r) BTN
4KIJKLN(TJTKTL 9gq,
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TABLE C2.- Continued

Order (a)
of Explicit form of RIa
equation
(1) 9Tk 9T
- — 4 —
Second KIJK<TJ 8q2 TK 8q2
9T T
(2) L J
KIJKL(ZTJTK aql + TKTL Bql>
32T 3T, 3T 32T
Third —Ké;; 3TJ 2K + 6 5—5‘5—5 + 3TK 2J
g 9 99 le}
1 1
2 2
«{? fer 1 T + 6T Tk 2Ty 127 EEE-EEI—J-+ 3T T T
IJKL| “J°K aqz J 8q2 8q2 K 3 5 3 5 K'L 3q2
2 2
(r) 32T BTL aTN
Kroxn\12T5TTL T2 T 30Tk 9q., ogq
8q3 3 3
T, OT 9T, 9T 3%
_K(Z) 4T _ﬁ____]-‘.'. AT _J_L_+ AT T _#
IJKL J an aq3 K aq2 8q3 J°K aq2 aq3
2
+ 4T EEE-EEE-+ 2T T —3;51——
K 8q3 aq2 K'L 3q2 3q3
(r) 32TN BTL BTN
Kogxw | T2 Y 12T dq., 9q
3q2 2 2
2 2
_KéiéL 2T5Tx : ZL + 2T gTK gTL * 4TK iTJ 2TL * TTL : ZJ
3q 43 993 43 943 3q
3 3
(r) aTL BTN 32TN
“Kygxn (%475 Tk 3a. dgq. & 8T 5Tk Ty, 99, 9gq
2 3 2 3
9T 3T 5% 3T 3T 52t
_K(l) J K, K J K, oo J
IJK Bql ) 3 J Bql Bq3 3q3 Bql K Bql 8q3
(r) 82TN BTL BTN
- + —_
KIJKLN 4TJTKTL 2 12TJTK 9q. 9q
Bql 1 1
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TABLE C2.-~ Concluded

(a)

Explicit form of R

I
2 o 2\ o )
-K(l) . 9 Ty . s BTJ BTK ' o 0 T
IJK\J 3q2 3q3 3q3 K an
3 3
(r) a2TN 9Ty, 9Ty
-K 8T T T. =——a— + 24T T +—— =——
IJKLN| JK'L aql 3q3 J K Bql aq3
3T. 9T 32T 9T_ 3T 32T
(1) J °°K K J 9k J
“Kigkl? 39, 3 2Ty 55, T 2 3q. 5q. © “"k 3q. @
1 99 9 °9, 9 99y 9; °9p
32 9T, OT oT-. OT 82T \
(2) K °"L J 'L J
KIJKL 2TJTK 2 * J 9 a 4TK 2 9 + TKTL 2
dq 1 9% 9y 99 3q
1 1
2 2
—K(l) 9 Ty ‘s STJ 3TK ) T
CTIJKR\TT 8q2 aq2 2 5 K 3q2
2 2
3T, 9T 9T oT 3%t
{2 fap. KLy oar e AR L
IJKL\ ~J aql 0 K aql aq2 J°K aql aq2
2
3T, oT 9°T
J 'L J
+ 4T, —= —— 4+ 2T_T
K 8q2 Bql KL 9 1 qu
9T 3T 3% 9T dT 327
(1) J ?°K K J 9°k J
1ax\3q. 3q. T T3 3q. sq. | B, 34, | ' 3q, oq
2 943 2 %3 3 M2 2 793
oT, oT 9T, oT 327
—K(2) 2T K_L,yop 3 _L,orq L
IJKL\"7J Bql 8q3 K Bql d 3 J°K Bql 8q3
2
oT. oT °T
J 'L J
+ 27T, =—— — + T_T
K 3q3 Bql KL Bql 8q3
) dT, BT 32TN
“Kroxmw\12ToTk 9a; da, + AT ST 9a; 3a,
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In tables Cl and C2 a repeated uppercase Latin index denotes summation over the
range 1 to m. The evaluation of the right-hand-side vectors listed in tables Cl
and C2 involves contraction of K arrays with basis vectors. Many of the contracted
arrays reappear in subsequent right-hand sides. For computational efficiency, the
contracted arrays which are common to more than one right-hand side are generated
once and stored for subsequent use. Note that the coefficient matrix on the left-
hand sides of equations (Cl) and (C2), which must be factored, is the same for each
of the path derivatives. Hence, after assembly, the global matrix is factored only
once regardless of the number of path derivatives generated.
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TREATMENT OF PRESCRIBED BOUNDARY TEMPERATURES

In the case of prescribed nonzero values for the boundary temperatures, it is

convenient to partition the vector of nodal temperatures {T} as follows:

Te

{r} = (D1)

where {Tf} and {Tp} are the vectors of free and prescribed nonzero nodal tempera-
tures. The prescribed zero nodal temperatures and their associated equations are

eliminated from equation (1). The prescribed nonzero nodal temperatures are assumed
to be proportional to the parameter g, that is,

{Tp} = g{z} (D2)

Governing Finite-~-Element Equations

Equation (1) can be conveniently partitioned into two sets of matrix equations
as follows:

- - q = Q0 (D3)
£ (Te ) Kog (T K (D) | T, o,

In the absence of heat sources and radiation and convection thermal loads,

{Q¢} =0 and {Qp} equals the equivalent thermal loads associated with the pre-
scribed temperatures {Tp}.

The first set of equations in equation (D3) is used to
determine {T¢}

and the second set can then be used to evaluate the vector {Qp}.

Basis Vectors and the Reduced System of Equations

The matrix [T'] in eguation (10) can be conveniently partitioned as follows:

[r] = (D4)
T
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where
— , .
Tf 0 Tf
r 0 - e
£ og 3 2
= ’ ’ 4 ’ (D5)
r 2 0 0 .o
P
for the single-parameter case, and
i 3 3 ]
g . Tf Tf BTf
£ 3ql 3q2 3q3
= 4 ’ ’ ’ (D6)
T Z 0] 0 0 .
b

for the three-parameter case.

The corresponding reduced-system equations are given by equation (11) with {5}
given by

3} = [r]" (D7)

Note that when {Qf} =0, {é} has only one nonzero component, namely él' Equa-
tion (11) is solved for the reduced unknowns {{} subject to the condition wl = g.

Whenever desired, the basis vectors in equations (D5) and (D6) are augmented by
the constant and reciprocal vectors defined in the paper.
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EXACT SOLUTION FOR TWO-DIMENSIONAL STEADY-STATE CONDUCTION IN A
SQUARE PLATE WITH TEMPERATURE-~DEPENDENT THERMAL CONDUCTIVITIES

The exact solution for the two-dimensional steady-state conduction in a square
isotropic plate with temperature-dependent thermal conductivities can be obtained by
using the Kirchhoff transformation (see page 11 of ref. 11), which involves the fol-
lowing substitution:

1 T
u(T) = —f k(T) ar (E1)
k° Jo

For quadratic variation of conductivity with temperature of the form

k(T) = ko(l + y{T + Y2T2>, equation (El) becomes
Uu(T) = T(l + % YlT + % Y2T2> (E2)

The governing differential equation for heat conduction in the plate is linear
in the transformed variable U(T). The expression of U(T) which satisfies the
boundary conditions shown in figure 1 can be written in the following form:

[s0]

mﬂxl m’lTx2
U = E Am sin T sinh I (E3)

m=1,3,5,...

where L 1is the side length of the plate and

A = — 2 - sin e sin ™
" L sinh (mm) o L |? L
Txq\2 x4 \3
1 . 1 1 1
+ 1 1 .
5 Yl<q sin —= > + 3 Y2<q sin —= )J dxq (E4)

Once the coefficients A, have been evaluated and U is determined from equa-
tion (E3), the value of the temperature T at each point can be obtained by solving
the cubic equation (eq. (E2)).

In the present study, 10 terms were included in the series expansion of U
(eg. (E3)), with an estimated maximum truncation error of 1 X 1073 for the tempera-
ture T. The computerized symbolic and algebraic manipulation system MACSYMA
(ref. 12) was used in the computation.
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SYMBOLS

A cross—-sectional area of fin
a absorptivity
c circumference of fin
ée),cée) portions of the element domain where radiant and convective heating

(or cooling) are prescribed (see appendix A)

e error norm defined in equation (19)

(s(m}, {EFw} vectors defined in equations (1) and (11)
H incident radiant heat flux

h convection coefficient

[7] Jacobian matrix defined in equation (9)

[3] Jacobian matrix of the reduced equations

[x(m) ], [KW)]

[ ],[k ],
[k(r)] [x(M)]

[, [k(]

[k, [x)],
[k, [(2)]

[(9)] [£(M)]

K(o)'K(l),K(Z)
IJ 'TI0K' IJKL

(r) (h)
IJKLN'KIJ
E(O) ~(1) R(Z)

15 Fi9krKigke

K

~(r) ~(h)
Kiskan %14
hO

(o]
kaB'haB
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heat-transfer matrices of the full and reduced systems (see
egs. (1) and (12))

conduction, radiation, normalized radiation, and convection matrices
of the full system (see egs. (2) and (6))

linear conduction matrices (independent of T) of the full and
reduced systems (see eqgs. (5) and (14))

normalized nonlinear conduction matrices of the full and reduced
systems (see egs. (5) and (14))

normalized radiation and convection matrices of the reduced system
(see eq. (14))

full-system linear and normalized nonlinear conduction arrays
defined in appendix A

full-system radiation and convection arrays defined in appendix A

reduced-system linear and normalized nonlinear conduction arrays
defined in appendix B

reduced-system radiation and convection arrays

thermal-conductivity coefficient of an isotropic material

thermal-conductivity coefficients in equation (4)



m number of nodes in an element
n total number of temperature degrees of freedom in the analysis model

NI shape (interpolation) function

{Q},{é} normalized thermal-load vectors for the full and reduced systems

{Qf},{Qp} thermal-load vectors associated with free and prescribed temperatures
(see eg. (D3))

{Q(O)},{Q(r)},{Q(h)} normalized applied heating, radiation, and convection thermal-
load vectors for the full system (see eq. (3))

{5(0)}’{§(r)}’{§(h)} normalized applied heating, radiation, and convection thermal-
load vectors for the reduced system (see eqg. (15))

Qéo),Qér),Qéh) normalized applied heating, radiation, and convection thermal-
load coefficients for the full system (defined in
appendix A)

éio),éér),ééh) normalized applied heating, radiation, and convection thermal-
load coefficients for the reduced system (defined in

appendix B)

9r9q 95095 normalizing (or control) parameters
{r} residual vector defined in equation (18)
r number of basis vectors (reduced-system degrqgs of freedom)
T temperature
{T},{Tf},{TP} vectors of free and prescribed nodal temperatures (see
(eg. (D1))
Ty, convective—-exchange temperature
T1 component of nodal-temperature vector
Xy Xy Cartesian coordinates
{z} vector of normalized prescribed nonzero nodal temperatures (see eqg. (D2))
Y1:Yo conductivity coefficients (see eqg. (4))
[F],[Tf],[Fp] matrices of basis vectors defined in equations (10) and (D4)
€ emissivity
{p} vector of undetermined coefficients of the reduced system
wi undetermined coefficients of the reduced system (amplitudes of global-

temperature modes)
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o Stefan—-Boltzmann constant

Q(e) domain (area or length) of a conduction element (see appendix A)
38 = B/BXB, B=1, 2

Range of indices:
I,J,X,L,N 1 to m (the number of nodes in the element)

i,j,k.%4,n 1 to r (the number of reduced-system degrees of freedom)

1,J7,L 1 to n (the total number of temperature degrees of freedom)
ao,B 1 to 2

Superscripts:

e element domain

h convection

k conduction

o] linear conduction

r radiation

1,2 normalized nonlinear conduction
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Figure l.- Finite-element model and normalized contour plots for temperatures at g = 300 K, 600 K, and 2400 K
in a square plate with temperature-dependent thermal conductivities.
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Figure 2.~ Normalized contour plots for the first six path derivatives for square plate with
temperature-dependent thermal conductivities.



se

Full system (190 D.OF.)
X 5 terms
O 6terms Taylor
1800 — X2 A 1800 — A 7 terms series
} O 8terms
D A
O
O 0O
1200 — d 1200 —
Cc A 0
Temperature O Temperature
A
K K
-600 Xy® | -600 l
A B Cc D

Figure 3.- Accuracy of solutions obtained by using Taylor series expansion for square plate with
temperature-dependent thermal conductivities. g = 300 K.
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Figure 4.- Accuracy of solutions obtained by using different sets of
basis vectors for square plate with temperature-dependent thermal

conductivities.
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Figure 5.- Accuracy and convergence of solutions obtained with different sets of basis vectors
(including the constant vector) for square plate with temperature-dependent thermal
conductivities.
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Figure 6.- Finite-element model and normalized contour plots for temperatures corresponding to
Y, =0 and 0.005 in a cylinder with an eccentric hole and temperature-dependent thermal
conductivities.
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Figure 8.- Conducting-convecting-radiating fin used in the present study.
T = 1000 K at x; = 0.
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methods for conducting-convecting-radiating fin.
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Figure 10.- Segment of the Shuttle wing bay
used in the present study.
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Figure 1ll.- Accuracy of solutions obtained by using single-parameter and three-parameter
reduction methods for segment of the Shuttle wing bay.
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Figure 12.- Accuracy and convergence of solutions obtained by single-parameter and three-parameter reduction
methods (including the constant vector) for segment of the Shuttle wing bay.
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